Agroforestry systems can be playing an advantageous role over conventional agricultural and forest production methods. They can offer increased productivity; social, economic and environmental benefits, as well as greater diversity in the ecological goods and services provided. Multipurpose trees are also a part of the agroforestry system. In addition to providing fodder, fuel, wood, and other products, trees in agroforestry systems promote soil and water conservation, enhance soil fertility, and act as windbreaks for nearby crops. Multipurpose tree species that is purposefully grown so as to provide two or more than two products and also service function like shelter, shade, land sustainability of the land-use system. Fodder trees are important feed sources for livestock in a wide range of farming systems over the world.
Low quality and quantity of feeds are major constraints limiting livestock productivity among smallholder farmers. In many country’s farmers have fed tree foliage to their livestock for centuries, using wild browse or trees that grow naturally on their farms. New agroforestry systems for feeding livestock have emerged over the last three decades, involving the planting of mostly exotic species, grown most frequently in hedges along field boundaries or along the contours to limit soil erosion.
As mentioned above the Monkey jack (Artocarpus lakoocha Roxb.) is an important agroforestry species. The lakoocha is one such important multipurpose plant species member of the family Moraceae. Lakoocha is a tropical tree species widely distributed in the countries like India, Sri Lanka, Bangladesh, Thailand, Cambodia, Malaysia, Indonesia and Singapore. It is generally found in Sub-Himalayan humid regions of India and grows up to an altitude of 1200 A MSL (Dwivedi et al., 2011).
Lakoocha is a medium to large deciduous or evergreen tree. The deciduous period is very short in Eastern India which generally commences in February and ends in early March. The deciduous period has been reported to be absent in Western Ghats (Krishnamurthy and Sarala., 2013). It can grow up to 15 m in height and makes a handsome ornamental tree. The leaves are oblong, acute, alternate, 10-25 cm, long, glossy green on the upper side whereas old leaves are rough. Lakoocha is a multipurpose tree that provides fruit, fodder, fuel, timber, medicine, dye and thick shade. The large leaves are excellent fodder and contain 16 per cent crude protein (Kharel et al., 2000). A single tree can produce 60 to 200 kg of leaves per year (Orwa et al., 2009). It is considered as one of the best forages for milch animals due to its palatability and nourishing values in Nepal and fodder for goats in Jharkhand (Dhungana et al., 2012).
A single fruit weighing between 250 g and 300 g contains 10-30 seeds that are irregular in shape and vary in size. The seeds containing white sticky latex are highly recalcitrant and are dispersed by birds and monkeys (Orwa et al., 2009 and Islam et al., 2016). Fresh fruits and seeds have high nutritional and medicinal value. The unripe fruit and male flower spike are used as vegetables and also used to make pickles, sauce and chutney. The fruits are sweet-sour in taste. The edible pulp is reported to have hepatoprotective properties due to the presence of antioxidants (Gautam and Patel., 2014) and is considered a liver tonic (Hari et al., 2014). It is used in anti-inflammatory therapy and also as an anti-ageing agent (Mongolsuk et al., 1957). The powdered bark is used as a paste for curing skin ailments like boils, pimples, and sores etc. Lakoocha is reported to be widely used in the ethnomedicinal formulations by the tribal people of Jharkhand (Pandey and Bhatnagar., 2009).
(Photographs taken from forestry farm of College of Horticulture and forestry at Khaggal, Hamirpur, Himachal Pradesh (one single tree from natural germination)
Artocarpus lakoocha is a potential tree species for nutrition, poverty alleviation, environmental, agricultural and forest ecosystem diversification and is capable of creating new market opportunities for livelihood security. Hence, a number of problems are associated with the regeneration and propagation of lakoocha including, (1) tree population of lakoocha is gradually decreasing due to its extensive exploitation for food, fodder, timber and other uses; (2) seeds, once extracted from the fruit, quickly lose viability within a week, or sometimes even in few days; and (3) vegetative propagation methods such as rooting of hardwood or softwood stem cuttings have not been successful (Napier and Robbins, 1989). Budding has been reported to be successful with only a single report in Western Himalaya (Sharma et al., 2005).
It belongs to family Moraceae other fruit like Jack fruit, Bread fruit belongs from same family. These are sour in test and the edible pulp is reported to have hepatoprotective properties due to the presence of antioxidants (Gautam and Patel., 2014) and is considered as a liver tonic (Hari et al., 2014). Photographs taken from forestry farm of College of Horticulture and forestry at Khaggal, Hamirpur, Himachal Pradesh (one single tree from natural germination).
Leaves of A. lakoocha containing moisture (61.0%), total ash (8.0%), crude protein (28.6%), crude fat (1.52%), crude fibres (26.3%) and carbohydrates (0.84%) respectively. Due to the high amount of protein content and palatability, it will help to eradicate fodder deficiency in dry months. It’s containing a higher amount of crude protein it will help to enhance milk production in milch animals even though it can help to maintain body weight and reproduction. By considering the importance of this tree it will provide help to provide an ample amount of essential nutrients to livestock in each and every season.
References:
Gupta A K, Rather M A, Kumar Jha A, Shashank A, Singhal S, Sharma M, Pathak U, Sharma D and Mastinu. 2020. A. Artocarpus lakoocha roxb. and Artocarpus heterophyllus lam. flowers: New sources of bioactive compounds. Plants. 9:1329.
Sharma K and Thakur S. 2005. Vegetative Multiplication of Artocarpus lakoocha Roxb. a Hard to Root Species. Indian Forester 131:259-260.
Napier I and Robbins M. 1989. Forest seed and nursery practice in Nepal.” Forest seed and nursery practice in Nepal 412p.
Mongolsuk S, Robertson A and Towers R. 1957. 429. 2: 4: 3′: 5′-Tetrahydroxystilbene from Artocarpus lakoocha. Journal of the Chemical Society 92: 2231-2233.
Kanak A R, Khan M J, Debi M R, Pikar M K and Aktar M. 2013. Nutritive value of three fodder species at different stages of maturity. Bangladesh Journal of Animal Science 41: 90- 95.
Islam S M, Hasan F M, Ali M, Robbani M and Hossain T M. 2016. Socioeconomic potential of monkey jack: a promising underutilized fruit in Bangladesh. International Journal of Innovative Research 1:40-44.
Gautam P and Patel R. 2014. Artocarpus Lakoocha Roxb: An Overview. European Journal of Complementary and Alternative Medicine 1:10-14.
Dwivedi D H, Mishra V, Singh N and Dwivedi S K. 2011. Genetic Variability Studies in Barhal Emile, Jean-Claude. Nutritive value and degradability of leaves from temperate woody resources for feeding ruminants in summer. 3rd European Agroforestry Conference Montpellier pp. 23-25.
Orwa C, Mutua A, Kindt R, Jamnadass R and Simons A. 2009. Agroforestree Database: a tree reference and selection guide. Version 4. Agroforestree Database: a tree reference and selection guide. Version 4.
Krishnamurthy S R and Sarala P. 2013. Phytochemical studies of Artocarpus gomezianus Wall. ex Trecul. var. lakoocha Roxb. fruits collected from various altitudes of Central Western Ghats. Indian Journal of Natural Product and Resources 4:398-411.
Kharel R, Amatya S M and Basukala R. 2000. Survival and growth of selected fodder species in Dhading, Kabhra and Sindhupalchok districts. Proceedings of the national-level Workshop on Improved Strategies for Identifying and Addressing Fodder Deficits in the Mid-Hills of Nepal (Eds Khare, R, Amataya SM, Kiff L. and Regmi, BN) Department of Forest Research and Survey, Kathmandu. 13p.
Pandey A, Bhatnagar SP. 2009. Antioxidant and Phenolic Content of the Bark of Artocarpus lakoocha. The Pharma Review 1:23-8.
Dhungana S, Tripathee H P, Puri L, Timilsina Y P and Devkota, K P. 2012. Nutritional Analysis of Locally Preferred Fodder Trees of Middle Hills of Nepal: A Case Study from Hemja VDC, Kaski District. Nepal Journal of Science and Technology 13: 39-44.
Hari A, Revikumar K G and Divya D. 2014. Artocarpus: A review of its phytochemistry and pharmacology. Journal of Pharma Search 9: 7-12.
Vaibhav R Jumale
Ph.D Research Scholar
Forestry (Silviculture)
Email@ vaibhav.jumale@gmail.com
mob:7350777626