Introduction
Banana (Order: Zingiberales; Family: Musaceae; Genus: Musa) is an important tropical and sub-tropical fruit crop grown all over the world. India is the largest producer and consumer of banana globally, producing about 30.46 million tons in the year of 2019 (FAOSTAT, 2021), contributing about 23% of world production. India is the largest producer of banana and the major producing states are Maharashtra, Kerala, Tamil Nadu, Gujarat, Bihar, West Bengal, Assam, Andhra Pradesh and Karnataka. Banana is commonly known as Kela in Indian sub-continent and regionally as Vazhappazham in Kerala, Vazhakkai in Tamil Nadu, Aratipandu in Andhra Pradesh, Kola in Bengali and Kol in Assam.
Banana is a large perennial monocotyledonous herbaceous plant having height up to 9 m with a long pseudostem that arises from the underground rhizomes (Ghag & Ganapathi, 2018). The leaves are oval, elongated and dark green in colour with each plant producing a single inflorescence. The fruits are oblong and fleshy with very small black seeds (Imam & Akter, 2011). All parts of plantain plants namely fruits, leaves, pseudostem, rhizomes and inflorescence are useful. Thus, it is known as a ‘Kalpataru’ in India, which is a Sanskrit term meaning ‘wish granting tree’ (Ghag & Ganapathi, 2018).
The plant is traditionally used as a medicinal herb. The leaves serve as a wrap for cooking, wrapping and serving food in certain traditions. Pseudostem and inflorescence are ingredients in many traditional cuisines. Rhizomes and the outer layer of pseudostem are utilized as animal feed. The fruit part is most commonly used either as raw fruit or in desserts, breakfast dishes when it is ripened. Unripe fruits are used commonly in curries, fried chips etc. The banana fruit, peel, and banana pseudo-stem from various species of banana have been reported to be rich in total carbohydrates, fibre and minerals specially potassium.
The cultivation of plantain is mainly carried out for fruits and the other parts such as leaves, inflorescence, pseudostem, peels and rhizomes are practically wasted. However, currently they have gained the status of valuable by-products generated from banana cultivation (Padam et al., 2014). It is estimated that, for each ton of banana fruit harvested, approximately 4 tons of biomass wastes including rotten fruit, leaves, pseudostem, rhizome and fruit bunch stem are produced (Subagyo & Chafidz, 2018). That is, in a hectare, on an average about 60 to 80 tons is of pseudostem alone. Conventionally, there are a few constraints in utilizing them, for instance pseudostem and inflorescence are considered as a vegetable in certain cultures, but the acceptance is very limited when compared to other leafy vegetables due to discoloration and taste. The surface of the banana pseudo-stem is easily subjected to browning after harvest, which will affect the sensory evaluation and economic value of the banana pseudo-stem made products. Other than the medicinal and culinary uses of banana, recent researches identified plantain and its parts as a great source of phytochemicals (Reddy & Hemachandran, 2014). Several applications of the banana pseudo stem in functional food and nutraceutical industries have been explored.
Banana Pseudostem
Banana Pseudo-stem (BPS) constitute a major part of plant biomass, which are wasted usually left in the plantation or incinerated. BPS is a rich source of fiber, total carbohydrate and cellulose (Saravanan et al., 2011). Pseudostem is the part of plantain plant, which is formed by tight overlapping of leaf stalk one over another with a center having tender core in a cylindrical shape. Plantain stem is a low cost agricultural waste, which can be altered into certain value added products in the current scenario.
Banana Pseudostem Applications
At present, the banana pseudo-stem are dumped on road side or burnt which causes environmental pollution. The usage of agricultural wastes contributes to the concept of green technology and hence paves the way towards sustainable development. Moreover it is an additional income for both small scale farmers and processing industries (Padam et al., 2014).
Natural fibre
Some researchers have successfully demonstrated the use of banana pseudo-stem and leaves for extraction of fibers on a small scale. The pseudostem fiber is used for making several value added products namely rope, cordage, fishing net, mat, packaging material, paper sheets, textile fabrics, bag, table cloth, handicrafts, absorbent, polymer/fibre composites etc. (Subagyo & Chafidz, 2018). The fiber is extracted by using a decorticator machine then retting and degumming processes are done.
Fuel
Bio-ethanol can be produced from banana pseudostem by fermentation process. Similarly, through banana waste methane can also be produced using anaerobic fermentation.
Substrate for edible
Banana pseudo stem can be utilized as a good substrate for edible mushrooms because of its high cellulose content.
Heavy metal and dye
Studies reported that banana pseudostem can be powerful absorbers of mercury and lead. Similarly it is also reported that banana pseudostem adsorbed methyl red in aqueous solution.
Organic manure
Banana pseudostem outer peels are used as organic manure for banana plantations itself.
Organic farming
Since banana pseudostem is having a good water retention capacity it can be used in organic farming. It can be done through digging small holes in the banana stem with the help of a sharp object like a knife. Add a little soil and feel free to plant as required.
Others
Pseudo-stem can be used in pulp and paper industries due to its cellulosic content. The banana pseudostem fiber can also be used for ropes such as marine rope since this fibre has good resistance to sea water and has buoyancy properties.
Banana pseudostem: Food applications
The banana central core finds use in south Indian cuisine. The tender core in the centre of the banana pseudostem is edible. In southern part of India, pseudo stem is cooked both as gravy and stir fry seasoned with ginger, garlic, chillies, shallots with curry leaves and grated coconut. In Assam, a dish called kolposola is prepared from young banana pseudostem. Some commonly prepared dishes using banana pseudostem and their recipes are Stir fry, curry, soup, stew, thor ghonto, and stem bajji.
Recently, value added innovative products from banana pseudostem are developed from Central Food Technological Research Institute, Karnataka. Apart from this, the high value products viz., mordant from sap, microcrystalline cellulose powder from fiber and edible products like candy from central core can also obtained (Desai et al., 2016). Stem juice can be prepared with or without addition of other juices like lemon or grape and sugar or jaggery (Kumar & Reddy, 2015; Ravi et al., 2011).
Extensive studies are undergone to explore various possibilities of value addition of banana pseudostem. Banana pseudostem can be dried into powder and can be utilized for carbohydrate and mineral fortification in different bakery products like bread, biscuits, cookies and dairy products like shrikhand, paneer and cheese (Thorat & Bobade, 2018).
Health benefits of Banana pseudostem
- Banana stem is a rich source of fibre and helps in weight loss (Chandrasekaran, 2012).
- Rich in potassium and vitamin B6.
- It helps to control obesity.
- It is said to be a diuretic and helps detoxify the body.
- It can be used as a source of starch, pectin, cellulose, natural dye, bio generation of flavours and nutrients like dietary fibre, carbohydrates and minerals (Padam et al., 2014).
- It has less glycemic index and high dietary fibre and antioxidant content which is good for diabetes (Bhaskar et al., 2011).
- In southern India, it is consumed as fresh juice to prevent kidney stones (Dawn et al., 2016).
- Banana pseudo-stem powder is a well-known remedy for urinary disorders, stomach troubles like diarrhoea, dysentery and flatulence.
- The food products which are fortified by banana pseudo-stem powder served as nutraceutical food and these show nutritional improvement as well as prove as medicine.
- It is known to be nutritionally superior and associated with several health benefits.
Recently researchers are more focused on identification, quantification and isolation of different bioactive components present in the pseudostem which have potential nutraceutical applications. Few are listed in Table 1.
Variety/Species | Study/ Bioactivity | REFERENCES |
Musa spp. (8 cultivars) | Invitro Anti-oxidant activity | Saravanan & Aradhya, 2011 |
Musa sapientum Linn. | Invivo Anti-diabetic and Anti-lipedemic activity | Dikshit et al., 2012 |
Musa parasidiaca Linn. | Invitro Anti-oxidant activity | Joyetal., 2016 |
Musa acuminata | Invitro Anticancer activity | Nindiaetal., 2019 |
Musa spp. (10 cultivars) | Antimicrobial activity | Jouneghani et al., 2020 |
Banana stem extracts
Banana stem extracts having potential hypoglycemic properties are traditionally used as anti-diabetic agents. A comparative study among various plant parts of plantain plant for hypoglycemic effect showed that the banana stem juice extract exhibited highest anti-diabetic activity than other plant parts as fruit, rhizome and peels (Reddy & Hemachandran, 2014).
Conclusion
Banana pseudo-stem is a by-product of banana plant which has a potential for providing profitable products. Banana pseudostem is an agro waste in plantain cultivation. So there is a great possibility of utilizing banana pseudo-stem in the food processing and other industries thereby providing an additional income for both small scale and large scale farmers. In India, the fibers are being used for preparing handicrafts, ropes etc., which otherwise can be used for making fabrics, home furnishings and good quality papers. The presence of various bioactive components in the pseudostem enhances the nutritional quality but also the therapeutic values of the products. So it will be a great opportunity for researchers in future. At the same time, the problem of waste management can also be solved and provides a new scope for the efficient utilization of banana pseudostem. And the farmers will get benefitted directly and it will contribute to our national economy.
References
Dikshit, P., Shukla, K., Tyagi, M. K., Garg, P., Gambhir, J. K., & Shukla, R. (2012). Antidiabetic and antihyperlipidemic effects of the stem of Musa sapientum Linn. in streptozotocin-induced diabetic rats. Journal of Diabetes, 4(4), 378–385. https:// doi.org/10.1111/j.17530407.2012.00198.x
Dong, N., Alena, N., Klára, S., Jiří, H., Huong, P., Jitka, V., Milena, S., Jana, H., & Tomáš, R. (2017). Antidiabetic compounds in stem juice from babana grown in natural and greenhouse. Czech Journal of Food Sciences, 35(No. 5), 407–413. https://doi. org/10.17221/172/2017-cjfs FAO (2021). http://www.fao. org/3/t0308e/T0308E03.htm, Accessed on March 10, 2021 FAOSTAT. (2019). http://www. fao.org/faostat/en/, Accessed on March 10, 2021.
Thorat, R.L. and Bobade, H.P. (2018). Utilization of banana pseudo-stem in food applications. Internat. J. Agric. Engg., 11(Sp. Issue):86-89, DOI: 10.15740/HAS/IJAE/ 11.Sp. Issue/86-89.
Ravi et al., “A review on composition and properties of banana fibers” Cellulose 60: 65, 2015.
Subagyo, A., Chafidz, A. (2018). Banana pseudo-stem fiber: preparation, characteristics and applications. IntechOpen.
Author Details:
Gadha Sreekumar
Ph. D Research Scholar, Department of Vegetable Science,
Horticulture College and Research Institute,
Tamil Nadu Agriculture University, Coimbatore, Tamil Nadu.
Email@gadharajee@gmail.com